Respuesta :

Hi there,

θ = 180º + the angle of the right-angled triangle.

For finding the angle we know that the opposite side measures 6 units and the adjacent side measures 8 units. So, the hypotenuse is 10 units.

If we want to find the angle of the right-angled triangle we have to use the following equation.

sin(the angle of the right-angled triangle) = [tex]\frac{6}{10}[/tex]

⇒ the angle of the right-angled triangle = [tex]sin^{-1}(\frac{6}{10})[/tex] ≈ 36,87º

So,

θ = 180º + the angle of the right-angled triangle

θ ≈ 180º + 36,87º

θ ≈ 216,87º

sin(θ) = sin(216,87º)

sin(θ) = [tex]\frac{-6}{10}[/tex]

sin(θ) = [tex]\frac{-3}{5}[/tex]

If you want to do it using properties:

θ = 180º + |the angle of the right-angled triangle|

⇒ sin(θ) = sin(180º + |the angle of the right-angled triangle|)

Using properties:

⇒ sin(θ) = sin(180º)*cos( |the angle of the right-angled triangle|) + cos(180º)*sin(|the angle of the right-angled triangle|)

Sin (180) = 0

⇒ sin(θ) = cos(180º)*sin(|the angle of the right-angled triangle|)

sin(the angle of the right-angled triangle) = -[tex]\frac{6}{10}[/tex]

And cos(180º) = -1

⇒ sin(θ) = -1* [tex]\frac{6}{10}[/tex]

⇒ sin(θ) = [tex]\frac{-6}{10}[/tex]

⇒ sin(θ) = [tex]\frac{-3}{5}[/tex]