Respuesta :

Answer:

CR = 17 ; PR = 30

Step-by-step explanation:

From the problem hypothesis we know that CD⊥PR or CQ⊥PR(perpendicular) and ∡PCQ ≡∡RCQ (bisector)

so ∡PCQ≡∡RCQ

     [CQ]≡[CQ] (common side)

     CQ⊥PR

--------------------------------------------

⇒(cathetus - angle case of congruence)⇒ ΔPQC≡ΔRQC so [PQ]≡[QR] (=15) // PR = PQ+QR ⇒ PR=30

from this congruence ⇒ΔPRC = isosceles so PC=CR=17

Hint: in any triangle is bisector of an angle it is perpendicular on the opposite side then triangle is isosceles.