A power [tex]a^b[/tex] gives 1 as a result in two cases
So, we need either
[tex]x^2-4x+5=1[/tex]
or
[tex]x^2+x^{-30}=0[/tex]
The first happens if
[tex]x^2-4x+5=1 \iff x^2-4x+4=0 \iff (x-2)^2=0 \iff x=2[/tex]
The second happens if
[tex]x^2+x^{-30}=0 \iff \dfrac{1+x^{32}}{x^{30}}=0[/tex]
which is impossible.
So, the only solution is [tex]x=2[/tex]