Use Euler's method with step size 0.2 to estimate y(2), where y(x) is the solution of the initial-value problem y' = 2 − 3xy, y(1) = 0. (Round your answer to four decimal places.)

Respuesta :

Answer:

[tex]y_2=0.512[/tex]

Step-by-step explanation:

We are given that

Step size=0.2

Initial value problem

y'=2-3xy

f(x,y)=2-3xy

y(1)=0

We have to find the value of [tex]y_2[/tex]

Euler's method of approximation

[tex]y_{n+1)=y_n+hf(x_n,y_n)[/tex]

We have [tex]y_0=0,x_0=1[/tex]

Substitute the value then we get when n=1

[tex]y_1=y_0+hf(x_0,y_0)[/tex]

[tex]y_1=0+(0.2)(2-3(1)(0))[/tex]

[tex]y_1=0.4[/tex]

[tex]x_1=x_0+h=1+0.2=1.2[/tex]

[tex]y_2=y_1+hf(x_1,y_1)[/tex]

[tex]y_2=0.4+0.2(2-3(1.2)(0.4))[/tex]

[tex]y_2=0.4+0.2\times 0.56[/tex]

[tex]y_2=0.4+0.112=0.512[/tex]

[tex]y_2=0.512[/tex]

The initial value of [tex]y' = 2 - 3\cdot x \cdot y[/tex] for [tex]x = 2[/tex] is [tex]y_{5} \approx 0.3668[/tex].

How to use Euler's method

The Euler's method is a multistage numerical method, to estimate a point of a given solution based on a given initial value. The expressions required in this method are presented below:

[tex]f(x_{i}, y_{i}) = \frac{dy}{dx}|_{P_{i}}[/tex]   (1)

[tex]x_{i+1} = x_{i} + h[/tex]   (2)

[tex]y_{i+1} = y_{i} + h\cdot f(x_{i}, y_{i})[/tex]   (3)

Where [tex]h[/tex] is the step size.

Now we start iterating this differential equation:

Iteration 1

[tex]x_{o} = 1[/tex]

[tex]y_{o} = 0[/tex]

By (1):

[tex]f(x_{o}, y_{o}) = 2[/tex]

By (2):

[tex]x_{1} = 1.2[/tex]

By (3):

[tex]y_{1} = 0.4[/tex]

Iteration 2

[tex]x_{1} = 1.2[/tex]

[tex]y_{1} = 0.4[/tex]

By (1):

[tex]f(x_{1}, y_{1}) = 0.56[/tex]

By (2):

[tex]x_{2} = 1.4[/tex]

By (3):

[tex]y_{2} = 0.512[/tex]

Iteration 3

[tex]x_{2} = 1.4[/tex]

[tex]y_{2} = 0.512[/tex]

By (1):

[tex]f(x_{2}, y_{2}) = -0.150[/tex]

By (2):

[tex]x_{3} = 1.6[/tex]

By (3):

[tex]y_{3} = 0.41[/tex]

Iteration 4

[tex]x_{3} = 1.6[/tex]

[tex]y_{3} = 0.41[/tex]

By (1):

[tex]f(x_{3}, y_{3}) = 0.032[/tex]

By (2):

[tex]x_{4} = 1.8[/tex]

By (3):

[tex]y_{4} = 0.416[/tex]

Iteration 5

[tex]x_{4} = 1.8[/tex]

[tex]y_{4} = 0.416[/tex]

By (1):

[tex]f(x_{4}, y_{4}) = -0.246[/tex]

By (2):

[tex]x_{5} = 2[/tex]

By (3):

[tex]y_{5} = 0.3668[/tex]

The initial value of [tex]y' = 2 - 3\cdot x \cdot y[/tex] for [tex]x = 2[/tex] is [tex]y_{5} \approx 0.3668[/tex]. [tex]\blacksquare[/tex]

To learn more on Euler's method, we kindly invite to check this verified question: https://brainly.com/question/15237275