Respuesta :

Answer: [tex]c=-\frac{3}{4}[/tex]

Step-by-step explanation:

Find the x-coordinate of the vertex with this formula:

[tex]x=\frac{-b}{2a}[/tex]

In this case:

[tex]a=4\\b=-10[/tex]

Substituting values, we get:

[tex]x=\frac{-(-10)}{2(4)}=\frac{5}{4}[/tex]

Now we can substitute the coordinates of the vertex into the equation [tex]y = 4x^2 -10x + c[/tex] and then solve for "c".

Then:

[tex]-7 = 4(\frac{5}{4})^2 -10(\frac{5}{4}) + c\\\\-7+\frac{25}{4}=c\\\\c=-\frac{3}{4}[/tex]