Refer to the accompanying data display that results from a sample of airport data speeds in Mbps. Complete parts​ (a) through​ (c) below. TInterval ​(13.046,22.15) x overbarequals17.598 Sxequals16.01712719 nequals50 a. Express the confidence interval in the format that uses the​ "less than" symbol. Given that the original listed data use one decimal​ place, round the confidence interval limits accordingly. 13.05 Mbpsless thanmuless than 22.15 Mbps ​(Round to two decimal places as​ needed.) b. Identify the best point estimate of mu and the margin of error.

Respuesta :

Answer: (a) [tex]13.046<\mu< 22.15[/tex]

(b) The best  point estimate of [tex]\mu[/tex] is the sample mean [tex]=17.598[/tex]

The margin of error =  4.552

Step-by-step explanation:

Given : The confidence interval for the population mean =  (13.046 , 22.15)

Sample mean : [tex]\overline{x}=17.598[/tex]

Standard deviation : [tex]\sigma= 16.01712719[/tex]

Sample size : [tex]n=50[/tex]

a. Let [tex]\mu[/tex] represents the population mean.

Then we can write the confidence interval for the population mean as :-

[tex]13.046<\mu< 22.15[/tex]

b. The best  point estimate of [tex]\mu[/tex] is the sample mean [tex]=17.598[/tex]

Also, the lower limit of confidence interval can be written as

[tex]\overlien{x}-E[/tex]

i.e. [tex]\overlien{x}-E=13.046[/tex]

[tex]E=\overline{x}-13.046=17.598 -13.046=4.552[/tex]

Hence, the margin of error =  4.552

The confidence interval is the range of value of a sample that represents the population.

  • The format of the confidence interval is: [tex]\mathbf{13.046 < \mu < 22.15}[/tex]
  • The point estimate of the population is the sample mean
  • The margin of error is 4.522

The given parameters are:

[tex]\mathbf{\bar x = 17.598}[/tex]

[tex]\mathbf{n = 50}[/tex]

[tex]\mathbf{CI = (13.046,22.15)}[/tex]

[tex]\mathbf{\sigma_x = 16.01712719}[/tex]

(a) Express the confidence interval in the required format

We have:

[tex]\mathbf{CI = (13.046,22.15)}[/tex]

So, the required format is:

[tex]\mathbf{L < \mu < U}[/tex]

Where L and U are the lower and the upper intervals.

So, we have:

[tex]\mathbf{13.046 < \mu < 22.15}[/tex]

(b) Estimate of [tex]\mathbf{\mu}[/tex] and the margin of error

The point estimate of the population is the sample mean

The margin of error (E) is then calculated as:

[tex]\mathbf{E = \bar x - L}[/tex]

So, we have:

[tex]\mathbf{E = 17.598 - 13.046}[/tex]

[tex]\mathbf{E = 4.552}[/tex]

Hence, the margin of error is 4.522

Read more about confidence intervals at:

https://brainly.com/question/24131141