Determine if triangle ABC with coordinates A (0, 2), B (2, 5), and C (−1, 7) is an isosceles triangle. Use evidence to support your claim. If it is not an isosceles triangle, what changes can be made to make it isosceles? Be specific.

Respuesta :

Answer:

The triangle ABC is an isosceles right triangle

Step-by-step explanation:

we have

The coordinates of triangle ABC are

A (0, 2), B (2, 5), and C (−1, 7)

we know that

An isosceles triangle has two equal sides and two equal internal angles

The formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

step 1

Find the distance AB

substitute in the formula

[tex]d=\sqrt{(5-2)^{2}+(2-0)^{2}}[/tex]

[tex]d=\sqrt{(3)^{2}+(2)^{2}}[/tex]

[tex]dAB=\sqrt{13}\ units[/tex]

step 2

Find the distance BC

substitute in the formula

[tex]d=\sqrt{(7-5)^{2}+(-1-2)^{2}}[/tex]

[tex]d=\sqrt{(2)^{2}+(-3)^{2}}[/tex]

[tex]dBC=\sqrt{13}\ units[/tex]

step 3

Find the distance AC

substitute in the formula

[tex]d=\sqrt{(7-2)^{2}+(-1-0)^{2}}[/tex]

[tex]d=\sqrt{(5)^{2}+(-1)^{2}}[/tex]

[tex]dAC=\sqrt{26}\ units[/tex]

step 4

Compare the length sides

[tex]dAB=\sqrt{13}\ units[/tex]

[tex]dBC=\sqrt{13}\ units[/tex]

[tex]dAC=\sqrt{26}\ units[/tex]

[tex]dAB=dBC[/tex]

therefore

Is an isosceles triangle

Applying the Pythagoras Theorem

[tex](AC)^{2} =(AB)^{2}+(BC)^{2}[/tex]

substitute

[tex](\sqrt{26})^{2} =(\sqrt{13})^{2}+(\sqrt{13})^{2}[/tex]

[tex]26=13+13[/tex]

[tex]26=26[/tex] -----> is true

therefore

Is an isosceles right triangle