Respuesta :

Final result :

 -4x40 - 40x - 175

 —————————————————

         5        

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "x4"   was replaced by   "x^4".  

(2): ".8" was replaced by "(8/10)".

Step by step solution :

Step  1  :

           4

Simplify   —

           5

Equation at the end of step  1  :

         4                    

 ((0 -  (— • x40)) -  8x) -  35

         5                    

Step  2  :

Equation at the end of step  2  :

        4x40            

 ((0 -  ————) -  8x) -  35

         5              

Step  3  :

Rewriting the whole as an Equivalent Fraction :

3.1   Subtracting a whole from a fraction  

Rewrite the whole as a fraction using  5  as the denominator :

         8x     8x • 5

   8x =  ——  =  ——————

         1        5    

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole  

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions  

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

-4x40 - (8x • 5)     -4x40 - 40x

————————————————  =  ———————————

       5                  5      

Equation at the end of step  3  :

 (-4x40 - 40x)    

 ————————————— -  35

       5          

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Subtracting a whole from a fraction  

Rewrite the whole as a fraction using  5  as the denominator :

         35     35 • 5

   35 =  ——  =  ——————

         1        5    

Step  5  :

Pulling out like terms :

5.1     Pull out like factors :

  -4x40 - 40x  =   -4x • (x39 + 10)  

Trying to factor as a Sum of Cubes :

5.2      Factoring:  x39 + 10  

Theory : A sum of two perfect cubes,  a3 + b3 can be factored into  :

            (a+b) • (a2-ab+b2)

Proof  : (a+b) • (a2-ab+b2) =  

   a3-a2b+ab2+ba2-b2a+b3 =

   a3+(a2b-ba2)+(ab2-b2a)+b3=

   a3+0+0+b3=

   a3+b3

Check :  10  is not a cube !!  

Ruling : Binomial can not be factored as the difference of two perfect cubes

Adding fractions that have a common denominator :

5.3       Adding up the two equivalent fractions  

-4x • (x39+10) - (35 • 5)     -4x40 - 40x - 175

—————————————————————————  =  —————————————————

            5                         5        

Step  6  :

Pulling out like terms :

6.1     Pull out like factors :

  -4x40 - 40x - 175  =   -1 • (4x40 + 40x + 175)  

Final result :

 -4x40 - 40x - 175

 —————————————————

         5