Respuesta :

Answer:

The solutions are x=1 and x=-2/3

Step-by-step explanation:

we have

[tex]3x^{2}-x-2=0[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]3x^{2}-x=2[/tex]

Factor the leading coefficient

[tex]3(x^{2}-(1/3)x)=2[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]3(x^{2}-(1/3)x+(1/36))=2+(1/12)[/tex]

[tex]3(x^{2}-(1/3)x+(1/36))=25/12[/tex]

Rewrite as perfect squares

[tex]3(x-(1/6))^{2}=25/12[/tex]

[tex](x-(1/6))^{2}=25/36[/tex]

square root both sides

[tex](x-(1/6))=(+/-)(5/6)[/tex]

[tex]x=(1/6)(+/-)(5/6)[/tex]

[tex]x=(1/6)(+)(5/6)=1[/tex]

[tex]x=(1/6)(-)(5/6)=-2/3[/tex]