Respuesta :

Answer:

9419.3 years.

Step-by-step explanation:

Let the initial amount of C-14 be 100 units.

We have been given that a hiker in Africa discovers a skull that contains 32% of its original amount of C-14. We are asked to find the age of the skull.

We will use half life formula to solve our given problem.

[tex]A=a\cdot(\frac{1}{2})^{\frac{t}{h}}[/tex], where,

A = Amount left after t years,

a = Initial amount,

t = time,

h = Half life.

We know that half-life of C-14 is 5730 years.

32% of 100 units would be 32.

[tex]32=100\cdot(\frac{1}{2})^{\frac{t}{5730}}[/tex]

[tex]\frac{32}{100}=\frac{100\cdot(\frac{1}{2})^{\frac{t}{5730}}}{100}[/tex]

[tex]0.32=(0.5)^{\frac{t}{5730}}[/tex]

Now, we will take natural log of both sides.

[tex]\text{ln}(0.32)=\text{ln}((0.5)^{\frac{t}{5730}})[/tex]

Using log property [tex]\text{ln}(a^b)=b\cdot\text{ln}(a)[/tex], we will get:

[tex]\text{ln}(0.32)=\frac{t}{5730}\cdot \text{ln}(0.5)[/tex]

[tex]\frac{\text{ln}(0.32)}{\cdot \text{ln}(0.5)}=\frac{t\cdot \text{ln}(0.5)}{5730\cdot \text{ln}(0.5)}[/tex]

[tex]1.64385618977=\frac{t}{5730}[/tex]

[tex]\frac{t}{5730}=1.64385618977[/tex]

[tex]\frac{t}{5730}*5730=1.64385618977*5730[/tex]

[tex]t=9419.295967[/tex]

[tex]t\approx 9419.3[/tex]

Therefore, the age of skull is approximately 9419.3 years.