Respuesta :

Answer:

[tex]c=13.8\ units[/tex]

Step-by-step explanation:

step 1

Find the measure of angle B

Applying the law of sines

[tex]\frac{a}{sin(A)}=\frac{b}{sin(B)}[/tex]

substitute the given values and solve for sin(B)

[tex]\frac{8}{sin(35\°)}=\frac{10}{sin(B)}[/tex]

[tex]sin(B)=sin(35\°)(10)/8[/tex]

[tex]B=arcsin(sin(35\°)(10)/8)[/tex]

[tex]B=45.8\°[/tex]

step 2

Find the measure of angle C

Remember that

The sum of the interior angles of a triangle must be equal to 180 degrees

so

[tex]A+B+C=180\°[/tex]

substitute and solve for C

[tex]35\°+45.8\°+C=180\°[/tex]

[tex]80.8\°+C=180\°[/tex]

[tex]C=180\°-80.8\°=99.2\°[/tex]

step 3

Find the measure of side c

Applying the law of sines

[tex]\frac{a}{sin(A)}=\frac{c}{sin(C)}[/tex]

[tex]\frac{8}{sin(35\°)}=\frac{c}{sin(99.2\°)}[/tex]

[tex]c=\frac{8}{sin(35\°)}(sin(99.2\°))}[/tex]

[tex]c=13.8\ units[/tex]