Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using De Moivre's theorem

Given

[ 4(cos15° + isin15° ) ]³, then

= 4³ [ cos(3 × 15°) + isin(3 × 15°) ]

= 64 (cos45° + isin45° )

= 64 ([tex]\frac{\sqrt{2} }{2}[/tex] + [tex]\frac{\sqrt{2} }{2}[/tex] i )

= 64 ([tex]\frac{\sqrt{2} }{2}[/tex] (1 + i) )

= 32[tex]\sqrt{2}[/tex] (1 + i)

= 32[tex]\sqrt{2}[/tex] + 32[tex]\sqrt{2}[/tex] i