The quadratic formula is used to solve for ???? in equations taking the form of a quadratic equation, ????????2+????????+????=0. quadratic formula:????=−????±√(????^2−4????????)/2????. Solve for ???? in the expression using the quadratic formula. 2????^2+31????−6.1=0. Use at least three significant figures in each answer.

Respuesta :

Answer:

Using the quadratic formula

[tex]x=\frac{-b+/-\sqrt{b^{2}-4ac } }{2a}[/tex]

The answer to the equation [tex]2x^{2} +31x-6.1=0[/tex] using at least three significant figures is:

[tex]x_{1}=0.194\\x_{2}=-15.694[/tex]

Step-by-step explanation:

The quadratic formula is used to solve polynomials of second degree.

We have a polynomial of second degree to be resolved with the quadratic formula:

[tex]2x^{2} +31x-6.1=0[/tex] (Eq. 1)

We know the quadratic formula is:

[tex]x=\frac{-b+/-\sqrt{b^{2}-4ac } }{2a}[/tex] (Eq. 2)

To resolve the quadratic formula we need the a, b and c coefficients, we can find these coefficients in the equation 1.

a: Coefficient that accompanies [tex]x^{2}[/tex]

b: Coefficient that accompanies [tex]x[/tex]

c: Independent term

With this information and the equation (1). We know the values of a, b and c

[tex]a=2\\b=31\\c=-6.1\\[/tex]

Now, we can replace these terms in the quadratic formula (Eq. 2)

The first root will be found using the positive sign before the square root:

[tex]x=\frac{-b+\sqrt{b^{2}-4ac } }{2a}[/tex]

[tex]x=\frac{-31+\sqrt{31^{2}-[4*2*(-6.1)]} }{2*2}[/tex]

[tex]x=\frac{-31+\sqrt{961-(-48.8)} }{4}[/tex]

[tex]x=\frac{-31+\sqrt{961+48.8} }{4}[/tex]

[tex]x=\frac{-31+\sqrt{1009.8} }{4}[/tex]

[tex]x=\frac{-31+31.777 }{4}[/tex]

[tex]x=0.194[/tex]

The second root will be found using the negative sign before the square root

:

[tex]x=\frac{-b-\sqrt{b^{2}-4ac } }{2a}[/tex]

[tex]x=\frac{-31-\sqrt{31^{2}-[4*2*(-6.1)]} }{2*2}[/tex]

[tex]x=\frac{-31-\sqrt{961-(-48.8)} }{4}[/tex]

[tex]x=\frac{-31-\sqrt{961+48.8} }{4}[/tex]

[tex]x=\frac{-31-\sqrt{1009.8} }{4}[/tex]

[tex]x=\frac{-31-31.777 }{4}[/tex]

[tex]x=-15.694[/tex]