Respuesta :

Answer:

x = 33

Step-by-step explanation:

Using the right triangles on the left and right and exact values

sin45° = [tex]\frac{\sqrt{2} }{2}[/tex], tan60° = [tex]\sqrt{3}[/tex]

using right triangle on left then

sin45° = [tex]\frac{opp}{hyp}[/tex] = [tex]\frac{opp}{11\sqrt{6} }[/tex] and

[tex]\frac{opp}{11\sqrt{6} }[/tex] = [tex]\frac{\sqrt{2} }{2}[/tex]

Cross- multiply

2 × opp = 11[tex]\sqrt{12}[/tex] = 22[tex]\sqrt{3}[/tex] ( divide both sides by 2 )

opp = 11[tex]\sqrt{3}[/tex]

Using right triangle on left

tan60° = [tex]\frac{opposite}{adjacent}[/tex]

note the adjacent side is the opposite side of the left triangle, so

tan60° = [tex]\frac{x}{11\sqrt{3} }[/tex] = [tex]\sqrt{3}[/tex], thus

x = 11[tex]\sqrt{3}[/tex] × [tex]\sqrt{3}[/tex] = 11 × 3 = 33