Rationalize the denominator of \frac{1 \sqrt{3}}{1-\sqrt{3}}. When you write your answer in the form A B\sqrt{C}, where A, B, and C are integers, what is ABC?

Respuesta :

Answer:

The value of ABC is 6.

Step-by-step explanation:

Consider the expression

[tex]\frac{1+\sqrt{3}}{1-\sqrt{3}}[/tex]

Rationalize the denominator.

[tex]\frac{1+\sqrt{3}}{1-\sqrt{3}}\times \frac{1+\sqrt{3}}{1+\sqrt{3}}[/tex]

[tex]\frac{(1+\sqrt{3})^2}{1^2-(\sqrt{3})^2}[/tex]

[tex]\frac{1^2+(\sqrt{3})^2+2\sqrt{3}}{1-3}[/tex]

[tex]\frac{1+3+2\sqrt{3}}{-2}[/tex]

[tex]\frac{4+2\sqrt{3}}{-2}[/tex]

[tex]\frac{4}{-2}+\frac{2\sqrt{3}}{-2}[/tex]

[tex]-2-\sqrt{3}[/tex]              ..... (1)

The answer in the form

[tex]A+B\sqrt{C}[/tex]           .... (2)

On comparing (1) and (2), we get

[tex]A=-2,B=-1,C=3[/tex]

We need to find the value of ABC.

[tex]ABC=(-2)(-1)(3)=6[/tex]

Therefore the value of ABC is 6.