Respuesta :

Answer:

[tex]4abx^{2}[/tex]

Step-by-step explanation:

we know that

[tex](a+b)^{2}=a^{2}+2ab+b^{2}[/tex] -----> Formula A

and

[tex](a-b)^{2}=a^{2}-2ab+b^{2}[/tex] -----> Formula B

In this problem we have

[tex](ax+bx)^{2}-(ax-bx)^{2}[/tex]

step 1

Solve [tex](ax+bx)^{2}[/tex]

Applying Formula A

[tex](ax+bx)^{2}=(ax)^{2}+2(ab)x^{2}+(bx)^{2}[/tex]

step 2

Solve [tex](ax-bx)^{2}[/tex]

Applying Formula B

[tex](ax+bx)^{2}=(ax)^{2}-2(ab)x^{2}+(bx)^{2}[/tex]

step 3

Substitute

[tex](ax+bx)^{2}-(ax-bx)^{2}=[(ax)^{2}+2(ab)x^{2}+(bx)^{2}]-[(ax)^{2}-2(ab)x^{2}+(bx)^{2}][/tex]

[tex]=(ax)^{2}+2(ab)x^{2}+(bx)^{2}-(ax)^{2}+2(ab)x^{2}-(bx)^{2}[/tex]

[tex]=4abx^{2}[/tex]