What is the radical expression that is equivalent 27 1/5?

Enter your answer as a radical. For example, if your answer is 3√14, enter your answer like this: cuberoot(14)

Respuesta :

For this case we have to define properties of powers and roots that:

[tex]\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}[/tex]

So, if we have the following expression:

[tex]27 ^ {\frac {1} {5}}[/tex]

We can rewrite it as:

[tex]\sqrt [5] {27 ^ 1} = \sqrt [5] {27}[/tex]

ANswer:

[tex]\sqrt [5] {27}[/tex]

Answer:

The required expression is [tex]27^{\frac{1}{5} } = \sqrt[5]{27}[/tex] or [tex]27^{\frac{1}{5} } = \sqrt[5]{3^3}[/tex]

Step-by-step explanation:

Consider the provided expression : [tex]27^{(\frac{1}{5} )}[/tex]

We need to find the radical expression.

Use the property:

[tex]\sqrt[n]{x} = x^\frac{1}{n}[/tex]

Where n is the index of the radical.

By using the above property we can rewrite the above expression as:

[tex]27^{\frac{1}{5} } = \sqrt[5]{27}[/tex]

OR

We can write 27 = 3×3×3 = 3³

[tex]\sqrt[5]{27} = \sqrt[5]{3^3}[/tex]

Therefore, the required expression is [tex]27^{\frac{1}{5} } = \sqrt[5]{27}[/tex] or [tex]27^{\frac{1}{5} } = \sqrt[5]{3^3}[/tex]