A uniform circular ring has charge Q= 7.36 μC, and radius r = 3.33 cm. Calculate the magnitude of the electric field at a distance of 4.20 cm along the axis of the ring.

Respuesta :

Answer:

Electric field, [tex]E=1.80\times 10^7\ N/C[/tex]

Explanation:

It is given that,

Charge on the ring, [tex]Q=7.36\mu C=7.36\times 10^{-6}\ C[/tex]

Radius of ring, r = 3.33 cm = 0.0333 m

Distance from axis of ring, x = 4.2 cm = 0.042 m

The electric field at the axis of ring is given by :

[tex]E=\dfrac{kxQ}{(x^2+r^2)^{3/2}}[/tex]

[tex]E=\dfrac{9\times 10^9\times 0.042\times 7.36\times 10^{-6}}{(0.042 ^2+0.0333 ^2)^{3/2}}[/tex]

[tex]E=1.80\times 10^7\ N/C[/tex]

So, the magnitude of electric field is [tex]1.80\times 10^7\ N/C[/tex] . Hence, this is the required solution.

Answer:

The magnitude of the electric field is [tex]17.77\times10^{6}\ N/C[/tex]

Explanation:

Given that,

Charge [tex]Q = 7.36\ \mu C[/tex]

radius r = 3.33 cm

Distance a = 4.20 cm

We need to calculate the distance  d

According to figure

[tex]d=\sqrt{r^2+a^2}[/tex]

We need to calculate the electric field

Using formula of electric field

[tex]E=\int{dE\cos\theta}[/tex]

[tex]E=\int{\dfrac{k dq}{d^2}\cos\theta}[/tex]

[tex]E=\dfrac{k}{d^2}\cos\theta\int{dq}[/tex]

[tex]E=\dfrac{kQ}{d^2}\times\dfrac{a}{d}[/tex]

[tex]E=\dfrac{kQa}{d^3}[/tex]

Put the value into the formula

[tex]E=\dfrac{9\times10^{9}\times7.36\times10^{-6}\times4.20\times10^{-2}}{(5.39\times10^{-2})^3}[/tex]

[tex]E=17.77\times10^{6}\ N/C[/tex]

Hence, The magnitude of the electric field is [tex]17.77\times10^{6}\ N/C[/tex]

Ver imagen CarliReifsteck