Respuesta :
Answer:
(a) 388 newton
(b) 17.15 m/s
Explanation:
r = 30 m
v = 10 m/s
m = 60 kg
(a) Let N be the normal reaction.
At the bump
N = mg - mv^2 / r
N = 60 x 9.8 - 60 x 10 x 10 / 30 = 588 - 200 = 388 newton
(b) Then the contact loose, N = 0
So, mg = mv^2 / r
v^2 = r x g = 30 x 9.8 = 294
v = 17.15 m/s
Answer:
(a) Normal force will be 388 N
(B) Speed of the car will be 17.94 m /sec
Explanation:
We have given velocity of the car v = 10 m /sec
radius of the bump = 30 m
Mass of the passenger m = 60 kg
(a) When the car is at the top of the bump then normal force will be equal to weight of the body minus centripetal force
So normal force [tex]N=mg-\frac{mv^2}{r}=60\times 9.8-\frac{60\times 10^2}{30}=588-200=388N[/tex]
(B) When car loose the contact then normal force will be zero
So [tex]0=mg-\frac{mv^2}{r}[/tex]
[tex]mg=\frac{mv^2}{r}[/tex]
[tex]60\times 9.8=\frac{60\times v^2}{30}[/tex]
[tex]v^2=294[/tex]
v = 17.94 m/sec