a. Transform [tex]X[/tex], the random variable representing SAT scores, to [tex]Z[/tex], the same random variable but following the standard normal distribution, via
[tex]X=\mu_XZ+\sigma_X[/tex]
[tex]P(X<675)=P\left(\dfrac{X-504}{112}<\dfrac{675-504}{112}\right)\approxP(Z<1.5268)\approx0.9366[/tex]
so that about 93.77% of scores fall below 675.
b. Use the same strategy to compute [tex]P(X>525)[/tex]:
[tex]P(X>525)=P\left(\dfrac{X-504}{112}>\dfrac{525-504}{112}\right)\approx P(Z>0.1875)\approx0.5744[/tex]
Then out of 1000 scores, you would expect about 574 of them to exceed 525.