Answer:
The energy stored in the magnetic field of the solenoid is 0.633 mJ.
Explanation:
Given that,
Length = 8.61 cm
Number of turns = 677
Diameter = 1.46 cm
Resistance = 0.684 Ω
emf = 0.728 V
We need to calculate the energy stored in the magnetic field
Using formula of inductance
[tex]L=\dfrac{\mu_{0}N^2A}{l}[/tex]
Where, N = number of turns
A= area
I = Current
Put the value into the formula
[tex]L=\dfrac{4\pi\times10^{-7}\times677^2\times\pi(\times0.73\times10^{-2})^2}{8.61\times10^{-2}}[/tex]
[tex]L=1.119\times10^{-3}\ H[/tex]
We need to calculate the current
Using ohm's law
[tex]I=\dfrac{V}{R}[/tex]
[tex]I=\dfrac{0.728}{0.684}[/tex]
[tex]I=1.064\ A[/tex]
We need to calculate the stored energy
Using formula of store energy
[tex]E=\dfrac{1}{2}LI^2[/tex]
Put the value into the formula
[tex]E=\dfrac{1}{2}\times1.119\times10^{-3}\times(1.064)^2[/tex]
[tex]E=0.633\times10^{-3}\ J[/tex]
[tex]E=0.633\ mJ[/tex]
Hence, The energy stored in the magnetic field of the solenoid is 0.633 mJ.