Respuesta :
Answer:
|v| = 8.7 cm/s
Explanation:
given:
mass m = 4 kg
spring constant k = 1 N/cm = 100 N/m
at time t = 0:
amplitude A = 0.02m
unknown: velocity v at position y = 0.01 m
[tex]y = A cos(\omega t + \phi)\\v = -\omega A sin(\omega t + \phi)\\ \omega = \sqrt{\frac{k}{m}}[/tex]
1. Finding Ф from the initial conditions:
[tex]-0.02 = 0.02cos(0 + \phi) => \phi = \pi[/tex]
2. Finding time t at position y = 1 cm:
[tex]0.01 =0.02cos(\omega t + \pi)\\ \frac{1}{2}=cos(\omega t + \pi)\\t=(acos(\frac{1}{2})-\pi)\frac{1}{\omega}[/tex]
3. Find velocity v at time t from equation 2:
[tex]v =-0.02\sqrt{\frac{k}{m}}sin(acos(\frac{1}{2}))[/tex]
The speed of the mass is about 0.0866 m/s
[tex]\texttt{ }[/tex]
Further explanation
Hooke's Law states that the length of a spring is directly proportional to the force acting on the spring.
[tex]\boxed {F = k \times \Delta x}[/tex]
F = Force ( N )
k = Spring Constant ( N/m )
Δx = Extension ( m )
[tex]\texttt{ }[/tex]
The formula for finding Young's Modulus is as follows:
[tex]\boxed {E = \frac{F / A}{\Delta x / x_o}}[/tex]
E = Young's Modulus ( N/m² )
F = Force ( N )
A = Cross-Sectional Area ( m² )
Δx = Extension ( m )
x = Initial Length ( m )
Let us now tackle the problem !
[tex]\texttt{ }[/tex]
Given:
mass of the object = m = 4.00 kg
force constant = k = 1.00 N/cm = 100 N/m
displacement = d = 2.00 cm = 0.02 m
Unknown:
speed of the mass = v = ?
Solution:
Let's find the initial displacement of the spring:
[tex]F = k x[/tex]
[tex]m g = k x[/tex]
[tex]4 \times 9.8 = 100 x[/tex]
[tex]x = 39.2 \div 100[/tex]
[tex]x = 0.392 \texttt{ m}[/tex]
[tex]\texttt{ }[/tex]
Next, we will use the law of conservation of energy as follows:
[tex]E_{p1} + E_{k1} = E_{p2} + E_{k2}[/tex]
[tex]\frac{1}{2}k(x + d)^2 + 0 = \frac{1}{2}k(x + 0.01)^2 + mg(0.01) + \frac{1}{2}mv^2[/tex]
[tex]\frac{1}{2}(100)(0.392 + 0.02)^2 = \frac{1}{2}(100)(0.392 + 0.01)^2 + 4(9.8)(0.01) + \frac{1}{2}(4)v^2[/tex]
[tex]8.4872 = 8.0802 + 0.392 + 2v^2[/tex]
[tex]0.015 = 2v^2[/tex]
[tex]v = \sqrt{0.015 \div 2}[/tex]
[tex]v = \frac{1}{20} \sqrt{3} \texttt{ m/s}[/tex]
[tex]v \approx 0.0866 \texttt{ m/s}[/tex]
[tex]\texttt{ }[/tex]
Learn more
- Young's modulus : https://brainly.com/question/6864866
- Young's modulus for aluminum : https://brainly.com/question/7282579
- Young's modulus of wire : https://brainly.com/question/9755626
[tex]\texttt{ }[/tex]
Answer details
Grade: College
Subject: Physics
Chapter: Elasticity
[tex]\texttt{ }[/tex]
Keywords: Elasticity , Diameter , Concrete , Column , Load , Compressed , Stretched , Modulus , Young
