Suppose an EPA chemist tests a 200.mL sample of groundwater known to be contaminated with iron(II) chloride, which would react with silver nitrate solution like this: FeCl2 (aq) + 2AgNO3 (aq) → 2AgCl (s) + FeNO32 (aq) The chemist adds 14.0m M silver nitrate solution to the sample until silver chloride stops forming. She then washes, dries, and weighs the precipitate. She finds she has collected 6.9mg of silver chloride. Calculate the concentration of iron(II) chloride contaminant in the original groundwater sample. Be sure your answer has the correct number of significant digits.

Respuesta :

Answer:

2.4 × 10^{-4} M Fe(II) or 1.3 × 10^{-2} mg Fe(II)/mL

Explanation:

According with the stoichiometry of the reaction:

[tex]6.9 mg AgCl (\frac{1mmol AgCl}{143.32 mg AgCl})(\frac{1 mmol FeCl_{2} }{1mmol AgCl})(\frac{1mmol Fe}{1mmol FeCl_{2} })= 0.048144 mmol Fe(II)\\[/tex]

Now, we divide by the volume of the aliquot

[tex]\frac{0.048144 mmol Fe(II)}{200 mL sample}= 2.4x10^{-4}  M Fe(II)[/tex]

Answer:

The concentration of iron(II) chloride contaminant in the original groundwater sample is [tex]1.2\times 10^{-4} mol/L[/tex].

Explanation:

[tex]FeCl_2 (aq) + 2AgNO_3 (aq)\rightarrow 2AgCl (s) + Fe(NO_3)_2 (aq)[/tex]

Amount of silver chloride recovered = 6.9 mg = 0.0069 g[/tex]

Moles of silver chloride = [tex]\frac{0.0069 g}{143.5 g/mol}=4.8252\times 10^{-5} mol[/tex]

According to reaction. 2 moles of silver chloride are obtained from 1 mole of iron(II) chloride.

Then [tex]4.8252\times 10^{-5}[/tex] moles of silver chloride will be obtained from:

[tex]\frac{1}{2}\times 4.8252\times 10^{-5} mol=2.4126\times 10^{-5} mol[/tex]

Moles of iron(II) chloride = [tex]2.4126\times 10^{-5} mol[/tex]

Volume of a sample of ground water = 200 mL = 0.2 L

[tex]Concentration=\frac{Moles}{Volume(L)}[/tex]

[tex][FeCl_2]=\frac{2.4126\times 10^{-5} mol}{0.2 L}=0.00012063 mol/L[/tex]

[tex][FeCl_2]=1.2063\times 10^{-4} mol/L\approx 1.2\times 10^{-4} mol/L[/tex]

The concentration of iron(II) chloride contaminant in the original groundwater sample is [tex]1.2\times 10^{-4} mol/L[/tex].