Assuming the population of interest is approximately normally​ distributed, construct a 95​% confidence interval estimate for the population mean given the values below. x overbar=19.3 s=3.1 n=23 The 95​% confidence interval for the population mean is from nothing to nothing.

Respuesta :

Answer: [tex](17.96,20.64)[/tex]

Step-by-step explanation:

The confidence interval for population mean is given by :-

[tex]\overline{x}\ \pm\ t_{n-1,\alpha/2}\dfrac{s}{\sqrt{n}}[/tex]

Given : [tex]\overline{x}=19.3[/tex]

[tex]s= 3.1[/tex]

n=23, which is a small sample(n<30), so we use t-test.

Significance level: [tex]1-0.95=0.05[/tex]

Critical value : [tex]t_{n-1,\alpha/2}=t_{22,0.025}=2.074[/tex]

Then , the  confidence interval for population mean will be  :-

[tex]19.3\ \pm\ (2.074)\dfrac{3.1}{\sqrt{23}}\\\\\approx19.3\pm1.34\\\\=(19.3-1.34,19.3+1.34)\\\\=(17.96,20.64)[/tex]

Hence, the 95​% confidence interval for the population mean is [tex](17.96,20.64)[/tex]

Otras preguntas