Answer: 0.98
Step-by-step explanation:
In statistics , the maximum error of the estimated mean is defined as the margin of error of the mean.
Formula to find the margin of error :-
[tex]E=z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]
Given : Significance level : [tex]\alpha=1-0.95=0.05[/tex]
Critical value : [tex]z_{\alpha/2}=1.96[/tex]
Sample size : n=100
Standard deviation : [tex]\sigma=5[/tex]
Then , [tex]E=(1.96)\dfrac{5}{\sqrt{100}}=0.98[/tex]
Hence, the maximum error of the estimated mean quality for a 95% level of confidence and an estimated standard deviation of 5= 0.98