Answer:
[tex]2.1\times 10^2[/tex] is the value of the equilibrium constant for this reaction.
Explanation:
[tex]2CCl_4(g)+O_2(g)\rightleftharpoons 2COCl_2(g)+2Cl_2(g)[/tex]
Molar concentrations of [tex]CCl_4[/tex] at equilibrium =[tex][CCl_4]=1.0M[/tex]
Molar concentrations of [tex]O_2[/tex] at equilibrium =[tex][O_2]=0.3M[/tex]
Molar concentrations of [tex]COCl_2[/tex] at equilibrium =[tex][COCl_2]=4.0M[/tex]
Molar concentrations of [tex]Cl_2[/tex] at equilibrium =[tex][Cl_2]=2.0M[/tex]
The equilibrium constant is given as:
[tex]K_c=\frac{[COCl_2]^2[Cl_2]^2}{[CCl_4]^2[O_2]}=\frac{(4.0 M)^2\times (2.0M)^2}{(1.0M)^2\times (0.3 M)}[/tex]
[tex]K_c=213.33\approx 2.1\times 10^2[/tex]
[tex]2.1\times 10^2[/tex] is the value of the equilibrium constant for this reaction.