Respuesta :

Answer:

Second option

Third option

Fourth option

Step-by-step explanation:

We have the following quadratic function

[tex]f(x) =(x-1)(x+7)[/tex]

Use the distributive property to multiply the expression

[tex]f(x) =x^2+7x-x-7[/tex]

[tex]f(x) =x^2+6x-7[/tex]

For a function of the form [tex]f (x) = ax ^ 2 + bx + c[/tex] the x coordinate of the vertex is:

[tex]x =-\frac{b}{2a}[/tex]

Then in this case the coordinate of the vertex is:

[tex]x =-\frac{6}{2(1)}[/tex]

[tex]x =-3[/tex]

To obtain the y coordinate of the vertex we evaluate the function at [tex]x = -3[/tex]

[tex]f(-3) =(-3)^2+6(-3)-7[/tex]

[tex]f(-3) =9-18-7[/tex]

[tex]f(-3) =-16[/tex]

Then the vertex is:  (-3, -16)

We can see in the graph that the zeros of the function are x=1 and x=-7

Then the function is decreasing from -∞ to -3 and then it is increasing from -3 to ∞

The function is positive for [tex]x <-7[/tex] and [tex]x> 1[/tex]

The correct answers are:

Second option

Third option

Fourth option