A proton, mass 1.67 · 10 27 kg and charge +1.6 · 10 19 C, moves in a circular orbit perpendicular to a uniform magnetic field of 0.71 T. Find the time for the proton to make one complete circular orbit.

Respuesta :

Answer:

Time, [tex]T=9.23\times 10^{-8}\ s[/tex]

Explanation:

It is given that,

Mass of proton, [tex]m=1.67\times 10^{-27}\ kg[/tex]

Charge on proton, [tex]q=1.6\times 10^{-19}[/tex]

Magnetic field, B = 0.71 T

Time taken by proton to make one complete circular orbit is given by :

[tex]T=\dfrac{2\pi m}{qB}[/tex]

[tex]T=\dfrac{2\pi \times 1.67\times 10^{-27}}{1.6\times 10^{-19}\times 0.71}[/tex]  

[tex]T=9.23\times 10^{-8}\ s[/tex]  

So, the time for the proton to make one complete circular orbit is  [tex]9.23\times 10^{-8}\ s[/tex]. Hence, this is the required solution.