What is the vapor pressure of the pure solvent if the vapor pressure of a solution of 10 g of sucrose (C6H12O6) in 100 g of ethanol (C2H6O) is 55 mmHg?

Respuesta :

Answer:

56.4 mmHg

Explanation:

Given:

Vapor pressure of the solution, P solution = 55 mmHg

The mass of sucrose (C₆H₁₂O₆) = 10 g

Also, Molar mass of sucrose (C₆H₁₂O₆) = 180 g/mol

So, moles = Given mass/ molar mass

Hence, moles of sucrose in the solution = 10 g / 180 g/mol = 0.05556 mol

Given that: Mass of ethanol = 100 g

Molar mass of ethanol = 46 g/mol

Hence, moles of ethanol = 100 g / 46 g/mol = 2.174 mol

Mole fraction of solvent, ethanol is:

X ethanol = 2.174 mol / (2.174 + 0.05556) mol = 0.975

Applying Raoult's Law

P solution = X ethanol*P° ethanol

=> P° ethanol  = P solution / X ethanol  = 55 mmHg / 0.975 = 56.4 mm Hg

Explanation:

The given data is as follows.

Vapor pressure of the solution [tex](P_{solution})[/tex] = 55 mm Hg

Mass of sucrose = 10 g

Molar mass of sucrose = 180 g/mol

Therefore, moles of sucrose present into the solution will be calculated as follows.

             No. of moles = [tex]\frac{mass}{molar mass}[/tex]

                                   = [tex]\frac{10 g}{180 g/mol}[/tex]

                                   = 0.055 mol

Mass of ethanol is given as 100 g and its molar mass is 46 g/mol.

Hence, number of moles of ethanol will be calculated as follows.

            No. of moles = [tex]\frac{mass}{molar mass}[/tex]

                                  = [tex]\frac{100 g}{46 g}[/tex]

                                  = 2.174 mol

As mole fraction = [tex]\frac{no. of moles}{total number of moles}[/tex]

Hence, mole fraction of etahnol will be calculated as follows.

            [tex]X_{ethanol}[/tex] = [tex]\frac{no. of moles}{total number of moles}[/tex]

                                              = [tex]\frac{2.174}{2.174 + 0.055}[/tex]

                                              = 0.975

Now, using Raoult's Law  as follows.

              [tex]P_{solution} = X_{ethanol} \times P_{ethanol}[/tex]

             [tex]P_{ethanol}[/tex] = [tex]\frac{P_{solution}}{X_{ethanol}}[/tex]

                                    = [tex]\frac{55 mm Hg}}{0.975}}[/tex]

                                    = 56.4 mm Hg

Thus, we can conclude that the vapor pressure of the pure solvent is 56.4 mm Hg.