Assume that adults have IQ scores that are normally distributed with a mean of mu equals 100 and a standard deviation sigma equals 20. Find the probability that a randomly selected adult has an IQ between 85 and 115.

Respuesta :

Answer: 0.5467

Step-by-step explanation:

We assume that the test scores for adults are normally distributed with

Mean : [tex]\mu=100[/tex]

Standard deviation : [tex]\sigma=20[/tex]

Sample size : = 50

Let x be the random variable that represents the IQ test scores for adults.

Z-score : [tex]z=\dfrac{x-\mu}{\sigma}[/tex]

For x =85

[tex]z=\dfrac{85-100}{20}\approx-0.75[/tex]

For x =115                                                                                                                                            

[tex]z=\dfrac{115-100}{20}\approx0.75[/tex]

By using standard normal distribution table , the probability the mean of the sample is between 95 and 105 :-

[tex]P(85<X<115)=P(-0.75<z<0.75)=1-2(P(z<-0.75))\\\\=1-2(0.2266274)=0.5467452\approx0.5467[/tex]

Hence, the probability that a randomly selected adult has an IQ between 85 and 115 =0.5467