Answer:
1.4584 kg[tex]m^2[/tex]
Explanation:
Time period of a physical pendulum is given by [tex]T=2Π\sqrt{\frac{I}{mgd}}[/tex]
Here f=0.290 so [tex]T=\frac{1}{F}=\frac{1}{0.29}=3.44827[/tex]
Mass =2.40 kg
d=0.300 m
g =9.8 m[tex]sec^2[/tex]
So [tex]3.448=2\times \pi \sqrt{\frac{I}{2.4\times 9.81\times 0.300}}=1.4584[/tex] kg-[tex]m^2[/tex]
So the moment of inertia of the pendulum about the pivot point will be 1.4584 kg-[tex]m^2[/tex]