Respuesta :

Answer:

0.9715 Fraction of Pu-239 will be remain after 1000 years.

Explanation:

[tex]\lambda =\frac{0.693}{t_{\frac{1}{2}}}[/tex]

[tex]A=A_o\times e^{-\lambda t}[/tex]

Where:

[tex]\lambda [/tex]= decay constant

[tex]A_o[/tex] =concentration left after time t

[tex]t_{\frac{1}{2}}[/tex] = Half life of the sample

Half life of Pu-239 = [tex]t_{\frac{1}{2}}=24,000 y[/tex][

[tex]\lambda =\frac{0.693}{24,000 y}=2.8875\times 10^{-5} y^{-1][/tex]

Let us say amount present of  Pu-239 today = [tex]A_o=x[/tex]

A = ?

[tex]A=x\times e^{-2.8875\times 10^{-5} y^{-1]\times 1000 y}[/tex]

[tex]A=0.9715\times x[/tex]

[tex]\frac{A}{A_0}=\frac{A}{x}=0.9715[/tex]

0.9715 Fraction of Pu-239 will be remain after 1000 years.