Respuesta :

Answer:

[tex]a_n=31(-15)^{n-1}[/tex]

31, -465, 6975, -104,625, 1,569,375, -23,540,625

Step-by-step explanation:

The formula for a geometric sequence is:

[tex]a_n=a_1(r)^{n-1}[/tex]

The formula for a geometric sequence is:

Where

r is the common ratio

[tex]a_1[/tex] is the first term

[tex]a_n[/tex] is the nth term

In this case

[tex]a_1=31[/tex]

[tex]a_6=-23,540,625[/tex]

So:

[tex]-23,540,625=31(r)^{6-1}[/tex]

Now we solve for r

[tex]-23,540,625=31(r)^{5}[/tex]

[tex]-\frac{23,540,625}{31}=r^{5}\\\\r=\sqrt[5]{-\frac{23,540,625}{31}}\\\\r=-15[/tex]

Then the four geometric means are

[tex]a_2=31(-15)^{2-1}=-465[/tex]

[tex]a_3=31(-15)^{3-1}=6975[/tex]

[tex]a_4=31(-15)^{4-1}=-104,625[/tex]

[tex]a_5=31(-15)^{5-1}=1,569,375[/tex]

31, -465, 6975, -104,625, 1,569,375, -23,540,625

Answer:

31, -465, 6975, -104,625, 1,569,375, -23,540,625

Step-by-step explanation: