Respuesta :
[tex]\bf \textit{surface area of a cylinder}\\\\ SA=2\pi r(h+r)~~ \begin{cases} r=radius\\ h=height\\ \cline{1-1} r=25~mm\\ \qquad 2.5cm\\ h=1~cm \end{cases}\implies SA=2\pi (2.5)(1+2.5) \\\\\\ SA=5\pi (3.5)\implies SA=17.5\pi \implies SA\approx 54.98~cm^2[/tex]
For this case we have that by definition, the surface area of a cylinder is given by:
[tex]SA = 2 \pi * r * h + 2 \pi * r ^ 2[/tex]
We have as data that:
[tex]h=1\cm\\[/tex]
[tex]r = 25 \ mm = 2.5 \ cm[/tex]
Replacing the data we have:
[tex]SA = 2 \pi * 2.5 * 1 + 2 \pi * (2.5) ^ 2[/tex]
[tex]SA = 5\pi+12.5\pi[/tex]
[tex]SA =17.5 \pi[/tex]
Taking[tex]\pi = 3.14[/tex]
[tex]SA = 54.95 \ cm ^ 2[/tex]
ANswer:
[tex]SA = 54.95 \ cm ^ 2[/tex]