Respuesta :

Answer:

[tex]y = \frac{3}{4} x \: \: and \: \: y = - \frac{3}{4} x[/tex]

Step-by-step explanation:

The given hyperbola has equation:

[tex] \frac{ {x}^{2} }{16} - \frac{ {y}^{2} }{9} = 1[/tex]

The equations of asymptotes of the hyperbola.

[tex] \frac{ {x}^{2} }{ {a}^{2} } - \frac{ {y}^{2} }{ {b}^{2} } = 1[/tex]

is

[tex]y = \pm \: \frac{b}{a} x[/tex]

Comparing the given equation to the standard equation of the hyperbola we have:

[tex] \frac{ {x}^{2} }{ {4}^{2} } - \frac{ {y}^{2} }{ {3}^{2} } = 1[/tex]

This implies that:

a=4 and b=3

The asymptote equations are:

[tex]y = \pm \frac{3}{4}x [/tex]

Or

[tex]y = \frac{3}{4} x \: \: and \: \: y = - \frac{3}{4} x[/tex]