Respuesta :
Answer:
[tex]36k^8 - 13k^6-64k^4-30k^2[/tex]
Step-by-step explanation:
Given expression,
[tex](9k^6 + 8k^4 - 6k^2) (4k^2 - 5)[/tex]
By distributive property,
[tex](9k^6 + 8k^4 - 6k^2) (4k^2) - (9k^6 + 8k^4 - 6k^2)(5)[/tex]
Again by distributive property,
[tex]9k^6(4k^2) + 8k^4(4k^2) - 6k^2(4k^2) - 9k^6(5) + 8k^4(5)- 6k^2(5)[/tex]
[tex]36k^6k^2 + 32k^4k^2 - 24k^2k^2 - 45k^6 - 40k^4- 30k^2[/tex]
By the product rule of exponent,
[tex]36k^{6+2} + 32k^{4+2} - 24k^{2+2} - 45k^6 - 40k^4- 30k^2[/tex]
[tex]36k^8 + 32k^6 - 24k^4 - 45k^6 - 40k^4- 30k^2[/tex]
By combining like terms,
[tex]36k^8 - 13k^6-64k^4-30k^2[/tex]
Since, further simplification is not possible hence, it is the required simplified answer.