Point charges of 27 Q are placed at each corner of an equilateral triangle, which has sides of length 3 L. What is the magnitude of the electric field at the mid-point of any of the three sides of the triangle in units of kQ/L2?

Respuesta :

Answer:

[tex]E_{net} = 2.25 KQ\L2[/tex]

Explanation:

from figure

[tex]d = \sqrt { l^2 -(\frac{l}{2})^2}[/tex]

  [tex]= \sqrt {\frac{3l^2}{4}[/tex]

  [tex]= l\sqrt{ \frac{3}{4}}[/tex]

net field at point P

[tex]E_{net} = E_1 -E_2 +E_3[/tex]

[tex]= K\frac{q_1}{(\frac{l}{2})^2} -K\frac{q_2}{(\frac{l}{2})^2} +K\frac{q_3}{d^2}[tex]

[tex]q_1 =q_2 =q_3 =27Q[/tex]

[tex]d = l\sqrt{ \frac{3}{4}}[/tex]

[tex]E_{net}  = K\frac{27Q}{(\frac{l}{2})^2} -K\frac{27Q}{(\frac{l}{2})^2} +K\frac{27Q}{(l\sqrt{ \frac{3}{4}})^2}[/tex]

[tex]E = \frac{27 KQ}{\frac{3}{4}l^2}[/tex]                         {l =4l}

[tex]E_{net} = \frac{4 *36 KQ}{3{4l}^2}[/tex]

[tex]E_{net} = 2.25 KQ\L2[/tex]

Ver imagen rejkjavik