Wastewater from a cement factory contains 0.280 g of Ca2+ ion and 0.0220 g of Mg2+ ion per 100.0 L of solution. The solution density is 1.001 g/mL. Calculate the Ca2+ and Mg2+ concentrations in ppm (by mass).

Respuesta :

Answer: The concentration of [tex]Ca^{2+}\text{ and }Mg^{2+}[/tex] ions are 2.797 ppm and 0.212 ppm respectively.

Explanation:

To calculate the mass of solution, we use the equation:

[tex]\text{Density of substance}=\frac{\text{Mass of substance}}{\text{Volume of substance}}[/tex]

Volume of gold = 100 L = 100000 mL    (Conversion factor:  1 L = 1000 mL)

Density of gold = 1.001 g/mL

Putting values in above equation, we get:

[tex]1.001g/mL=\frac{\text{Mass of solution}}{100000mL}\\\\\text{Mass of solution}=1.001\times 10^5g[/tex]

To calculate the concentration in ppm (by mass), we use the equation:

[tex]ppm=\frac{\text{Mass of solute}}{\text{Mass of solution}}\times 10^6[/tex]

  • Calculating the concentration of calcium ions:

Mass of [tex]Ca^{2+[/tex] ions = 0.280 g

Putting values in above equation, we get:

[tex]ppm(Ca^{2+})=\frac{0.280g}{1.001\times 10^5}\times 10^6=2.797ppm[/tex]

  • Calculating the concentration of magnesium ions:

Mass of [tex]Mg^{2+[/tex] ions = 0.0220 g

Putting values in above equation, we get:

[tex]ppm(Mg^{2+})=\frac{0.0220g}{1.001\times 10^5}\times 10^6=0.212ppm[/tex]

Hence, the concentration of [tex]Ca^{2+}\text{ and }Mg^{2+}[/tex] ions are 2.797 ppm and 0.212 ppm respectively.