Respuesta :

Answer:

Part 1) [tex]ED=10\ units[/tex]

Part 2) [tex]DB=10\ units[/tex]

Part 3) [tex]EB=20\ units[/tex]

Step-by-step explanation:

we know that

EB=ED+DB

ED=DB -----> given problem

Substitute the given values and solve for x

[tex]x+4=3x-8[/tex]

[tex]3x-x=4+8[/tex]

[tex]2x=12[/tex]

[tex]x=6[/tex]

Find the value of ED

[tex]ED=x+4[/tex]

substitute the value of x

[tex]ED=6+4=10\ units[/tex]

Find the value of DB

Remember that

ED=DB

therefore

[tex]DB=10\ units[/tex]

Find the value of EB

EB=ED+DB

[tex]EB=10+10=20\ units[/tex]

Answer:

[tex]20 = EB[/tex]

[tex]10 = DB[/tex]

[tex]10 = ED[/tex]

Step-by-step explanation:

By definition, according to this cross-section model, point [tex]D[/tex] is the segment bisector of all segments, according to which segments they are in congruence with. Anyway, here is how it is done:

3x - 8 = x + 4

-3x - 3x

_____________

−8 = −2x + 4

-4 - 4

_____________

−12 = −2x

____ ____

2 −2

[tex]6 = x[/tex][Plug this back into all expressions above to get the measurements of [tex]20 = EB[/tex], [tex]10 = DB[/tex], [tex]10 = ED[/tex]]

* Since point [tex]D[/tex] the segment bisector, you set the given equations equal to each other, then in the end, plug the x-value back into all expressions to get the length of [tex]EB[/tex].

I am joyous to assist you anytime.