Respuesta :

Answer:  2x

Step-by-step explanation:

Factor out the common term of 2x from the numerator, then cancel out the common factor from the numerator and denominator.

[tex]\dfrac{2x^3+2x^2+2x}{x^2+x+1}\quad =\dfrac{2x(x^2+x+1)}{x^2+x+1}\quad =2x[/tex]

For this case we have:

[tex]\frac {2x ^ 3 + 2x ^ 2 + 2x} {x ^ 2 + x + 1} =[/tex]

We have to:

[tex]2x ^ 3 + 2x ^ 2 + 2x = 2x (x ^ 2 + x + 1)[/tex]

So, rewriting the expression we have:

[tex]\frac {2x (x ^ 2 + x + 1)} {x ^ 2 + x + 1} =[/tex]

Simplifying similar terms of the numerator and denominator we have:[tex]\frac {2x (x ^ 2 + x + 1)} {x ^ 2 + x + 1} = 2x[/tex]

Answer:

[tex]2x[/tex]