Help asap
1.Which ordered pair is a solution to the system of inequalities?
{y>−2x+y≤4
(−2, −3)

(0, −4)

(1, 5)

(1, 3)

2.Which graph represents the solution set to the system of inequalities?

{y<−12x+2y≥−32x+2
Picture below

Help asap 1Which ordered pair is a solution to the system of inequalities ygt2xy4 2 3 0 4 1 5 1 3 2Which graph represents the solution set to the system of ineq class=

Respuesta :

frika

Answer:

See explanation

Step-by-step explanation:

1. To determine whether the ordered pair is the solution to the inequality, just substitute the coordinates of the ordered pair into the inequality

[tex]y>-2x+y\g\le 4[/tex]

A. For the ordered pair (-2,-3),

[tex]x=-2, y=-3[/tex]

Thus,

[tex]-3>-2\cdot (-2)+(-3)\le 4\\ \\-3>-4-3\le 4\\ \\-3>-7\le 4[/tex]

This option is true, because -3>-7 and -7≤4

B. For the ordered pair (0,-4),

[tex]x=0, y=-4[/tex]

Thus,

[tex]-4>-2\cdot 0+(-4)\le 4\\ \\-4>-4\le 4[/tex]

This option is false, because -4=-4 (not -4>-4)

C. For the ordered pair (1,5),

[tex]x=1, y=5[/tex]

Thus,

[tex]5>-2\cdot 1+5\le 4\\ \\5>-2+5\le 4\\ \\5>3\le 4[/tex]

This option is true, because 5>3 and 3≤4

D. For the ordered pair (1,3),

[tex]x=1, y=3[/tex]

Thus,

[tex]3>-2\cdot 1+3\le 4\\ \\3>-2+3\le 4\\ \\3>1\le 4[/tex]

This option is true, because 3>1 and 1≤4

2. The inequality [tex]y<-12x+2y\ge -32x+2[/tex] is equivalent to the system of two inequalities

[tex]\left\{\begin{array}{l}-12x+2y>y\\ \\-12x+2y\ge -32x+2\end{array}\right.\Rightarrow \left\{\begin{array}{l}-12x+y>0\\ \\20x+2y\ge 2\end{array}\right.[/tex]

Plot the dotted line [tex]-12x+y=0[/tex] and shade the upper region. Plot the solid line [tex]20x+2y=2[/tex] and shede the right part. The intersection of these two regions is the solution set to the inequality  [tex]y<-12x+2y\ge -32x+2[/tex] (see attached diagram)

Ver imagen frika

Answer:

1.) The answer is (1, 3).

2.) The answer is the top left.

( I took the test )