Respuesta :
Answer:
Part a)
charge on each sphere is -1.95 micro coulomb
Part b)
For first sphere
[tex]N = 2.6 \times 10^{13}[/tex] excess charge
For second sphere
[tex]N = 3.8 \times 10^{13}[/tex] excess charge
For third sphere
[tex]N = 3.4 \times 10^{13}[/tex] absent charge
For third sphere
[tex]N = 3.03 \times 10^{13}[/tex] absent charge
Explanation:
Part a)
Since all the spheres are of identical size so the total charge of the sphere will divide equally on them
So we have
[tex]q = \frac{Q_1 + Q_2 + Q_3 + Q_4}{4}[/tex]
[tex]q = \frac{2.2 \mu C + 4.2 \mu C - 7.4 \mu C - 6.8 \mu C}{4}[/tex]
[tex]q = -1.95 \mu C[/tex]
So charge on each sphere is -1.95 micro coulomb
Part b)
For first sphere
initial charge = 2.2 micro coulomb
final charge = -1.95 micro coulomb
excess charge = -1.95 - 2.2 = -4.15 micro coulomb
Q = Ne
[tex]N = \frac{4.15\times 10^{-19}}{1.6 \times 10^{-19}}[/tex]
[tex]N = 2.6 \times 10^{13}[/tex]
For second sphere
initial charge = 4.2 micro coulomb
final charge = -1.95 micro coulomb
excess charge = -1.95 - 4.2 = -6.15 micro coulomb
Q = Ne
[tex]N = \frac{6.15\times 10^{-19}}{1.6 \times 10^{-19}}[/tex]
[tex]N = 3.8 \times 10^{13}[/tex]
For third sphere
initial charge = -7.4 micro coulomb
final charge = -1.95 micro coulomb
absent charge = -1.95 + 7.4 = 5.45 micro coulomb
Q = Ne
[tex]N = \frac{5.45\times 10^{-19}}{1.6 \times 10^{-19}}[/tex]
[tex]N = 3.4 \times 10^{13}[/tex]
For third sphere
initial charge = -6.8 micro coulomb
final charge = -1.95 micro coulomb
absent charge = -1.95 + 6.8 = 4.85 micro coulomb
Q = Ne
[tex]N = \frac{4.85\times 10^{-19}}{1.6 \times 10^{-19}}[/tex]
[tex]N = 3.03 \times 10^{13}[/tex]