Answer:
[tex]d_2 = 242.44 cm[/tex]
Explanation:
First displacement is given as
[tex]d_1[/tex] = 163 cm at 128 degree
so we have
[tex]d_1 = 163 cos128 \hat i + 163 sin128 \hat j[/tex]
[tex]d_1 = -100.35 \hat i + 128.4 \hat j[/tex]
Now the resultant displacement is given as
[tex]d[/tex] = 176 cm at 36.8 degree
so we have
[tex]d = 176 cos36.8 \hat i + 176 sin36.8 \hat j[/tex]
[tex]d = 141 \hat i + 105.4 \hat j[/tex]
now we know that
[tex]d = d_1 + d_2[/tex]
[tex]141 \hat i + 105.4\hat j = -100.35 \hat i + 128.4 \hat j + d_2[/tex]
[tex]d_2 = 141\hat i + 105.4\hat j + 100.35 \hat i - 128.4 \hat j[/tex]
[tex]d_2 = 241.35 \hat i - 23\hat j[/tex]
so magnitude of the above displacement is given as
[tex]d_2 = \sqrt{241.35^2 + 23^2}[/tex]
[tex]d_2 = 242.44 cm[/tex]