Answer:
For aluminum 110.53 C
For copper 110.32 C
Explanation:
Heat transmission through a plate (considering it as an infinite plate, as in omitting the effects at the borders) follows this equation:
[tex]q = \frac{k * A * (th - tc)}{d}[/tex]
Where
q: heat transferred
k: conduction coeficient
A: surface area
th: hot temperature
tc: cold temperature
d: thickness of the plate
Rearranging the terms:
d * q = k * A * (th - tc)
[tex]\frac{d * q}{k * A} = th - tc[/tex]
[tex]th = \frac{d * q}{k * A} + tc[/tex]
The surface area is:
[tex]A = \frac{\pi * d^2}{4}[/tex]
[tex]A = \frac{\pi * 0.22^2}{4} = 0.038 m^2[/tex]
If the pan is aluminum:
[tex]th = \frac{0.008 * 600}{240 * 0.038} + 110 = 110.53 C[/tex]
If the pan is copper:
[tex]th = \frac{0.008 * 600}{390 * 0.038} + 110 = 110.32 C[/tex]