Respuesta :

Answer:

The perimeter is [tex]P=(15+\sqrt{65})\ units[/tex]  or  [tex]P=23.06\ units[/tex]

Step-by-step explanation:

we know that

The perimeter of triangle XYZ is equal to the sum of its length sides

[tex]P=XY+YZ+XZ[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have

[tex]X(0,2),Y(3,-2),Z(-7,-2)[/tex]

step 1

Find the distance XY

[tex]X(0,2),Y(3,-2)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(-2-2)^{2}+(3-0)^{2}}[/tex]

[tex]d=\sqrt{(-4)^{2}+(3)^{2}}[/tex]

[tex]d=\sqrt{25}[/tex]

[tex]dXY=5\ units[/tex]

step 2

Find the distance YZ

[tex]Y(3,-2),Z(-7,-2)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(-2+2)^{2}+(-7-3)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(-10)^{2}}[/tex]

[tex]d=\sqrt{100}[/tex]

[tex]dYZ=10\ units[/tex]

step 3

Find the distance XZ

[tex]X(0,2),Z(-7,-2)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(-2-2)^{2}+(-7-0)^{2}}[/tex]

[tex]d=\sqrt{(-4)^{2}+(-7)^{2}}[/tex]

[tex]dXZ=\sqrt{65}\ units[/tex]

step 4

Find the perimeter

[tex]P=XY+YZ+XZ[/tex]

substitute

[tex]P=5+10+\sqrt{65}[/tex]

[tex]P=(15+\sqrt{65})\ units[/tex] ----> exact value

[tex]P=(15+8.06)=23.06\ units[/tex] -----> approximate value