Answer:
The maximum power density in the reactor is 37.562 KW/L.
Explanation:
Given that,
Height = 10 ft = 3.048 m
Diameter = 10 ft = 3.048 m
Flux = 1.5
Power = 835 MW
We need to calculate the volume of cylinder
Using formula of volume
[tex]V =\pi r^2 h[/tex]
Put the value into the formula
[tex]V=\pi\times(1.524)^2\times 3.048[/tex]
[tex]V= 22.23\m^3[/tex]
[tex]V = 22.23\times10^{3}\ Liter[/tex]
We need to calculate the maximum power density in the reactor
Using formula of power density
[tex]P=\dfrac{E}{V}[/tex]
Where, P = power density
E = energy
V = volume
Put the value into the formula
[tex]P=\dfrac{835\times10^{6}}{22.23\times10^{3}}[/tex]
[tex]P=37561.85 = 37.562\times KW/L[/tex]
Hence, The maximum power density in the reactor is 37.562 KW/L.