Respuesta :
Answer:
a)
[tex]\omega_c=120\,rpm\, or\, 12.56 rad/s[/tex]
[tex]\omega_B=275\,rpm\, or\, 28.79 \, rad/s[/tex]
b)
[tex]a_A\approx23.68\,m/s^2[/tex]
[tex]a_B\approx 19.90\,m/s^2[/tex]
Where [tex]a_A[/tex] is the acceleration of a point on the outer rim of wheel A and [tex]a_B[/tex] the acceleration of a point on the outer rim of wheel B.
Explanation:
a)
Because there are no specification on what units we should give the answer it would be educational to give the answer in both ways, rpm and rad/s.
Attached is a sketch of the situation.
Let's define the following variables:
- [tex]r_A=24\,mm[/tex] which is the outer radius of wheel A.
- [tex]r_{Co}=60\, mm[/tex] which is the outer radius of wheel C.
- [tex]r_{Ci}=55\,mm[/tex] which is the inner radius of wheel C.
- [tex]r_B=r_A=24\,mm[/tex] which is the outer radius of wheel B
Wheel A rotates with an angular velocity of [tex]\omega_A=300\, rpm=300\times\frac{2\pi}{60}=10\pi\approx31.42\,rad/s[/tex]
Reminding that the linear velocity [tex]v[/tex] is related to the angular velocity [tex]\omega[/tex] by [tex]v=r.\omega[/tex] where [tex]r[/tex] is the radius of the circular motion, we can determine the angular velocity of wheel B.
At point of contact 1 we have the same linear velocity for the outer radius of wheel A as the outer radius of wheel C. Thus we have:
[tex]v_1=r_a\omega_a=r_{Co}.\omega_C\implies\omega_c=\frac{r_A}{r_{Co}}.\omega_A[/tex]
[tex]\implies \omega_c=\frac{24}{60}.10\pi\approx12.56 \, rad/s \, or\, \frac{24}{60}.300=120\,rpm[/tex]
Now we move to point of contact 2:
[tex]v_2=r_B.\omega_B=r_{Ci}.\omega_C[/tex]
[tex]\implies \omega_b=\frac{r_{Ci}}{r_B}.\frac{r_A}{r_{Co}}.300\,rpm[/tex]
[tex]\implies \omega_b=\frac{r_{Ci}}{r_B}.\frac{r_B}{r_{Co}}.300\,rpm[/tex]
[tex]\implies \omega_b=\frac{55}{60}.300\,rpm[/tex]
[tex]\implies \omega_b=275\, rpm[/tex]
alternatively we can express this as rad/s per second by doing:
[tex]\omega_b=\frac{55}{60}.10\pi\,rad/s\approx 28.79\, rad/s[/tex]
b)
The acceleration of a point undergoing circular motion is
[tex]a=r\omega^2[/tex]
Thus for a point in the outer rim of A we have [tex]\omega_A\approx31.42\, rad/s[/tex] and [tex]r_A=0.024 \, m[/tex].
We obtain from the previous [tex]a_A=r_A\omega_A^2\approx23.69 \, m/s^2[/tex]
Similarly:
[tex]a_B=r_B\omega_B^2\approx19.89 \, m/s^2[/tex]
