Respuesta :

Answer:

[tex]1 + 2y = x^2[/tex]

Step-by-step explanation:

Given differential equation,

[tex]\frac{dy}{dx}-2xy=x[/tex]

[tex]\frac{dy}{dx}=x+2xy[/tex]

[tex]\frac{dy}{dx}=x(1+2y)[/tex]

[tex]\frac{dy}{1+2y}=xdx[/tex]

Integrating both sides,

[tex]\int \frac{dy}{1+2y}=\int xdx----(1)[/tex]

Put 1 + 2y = u

Differentiating both sides,

2dy = du

[tex]\implies dy=\frac{du}{2}[/tex]

From equation (1),

[tex]\frac{1}{2} \int \frac{du}{u}=\int xdx[/tex]

[tex]\frac{1}{2}\log u = \log x + C[/tex]

[tex]\frac{1}{2} \log (1+2y)=\log x+C---(2)[/tex]

If x = 0, y = 0

[tex]\implies C=0[/tex]

From equation (2),

[tex]\frac{1}{2} \log(1+2y)=log x[/tex]

[tex]\log (1+2y) = 2\log x[/tex]

[tex]\log (1+2y) = \log x^2[/tex]

[tex]\implies 1 + 2y = x^2[/tex]