Respuesta :

Answer:

[tex]y-4=\frac{2}{5}(x+2)[/tex]

[tex]y=\frac{2}{5}x+\frac{24}{5}[/tex]

[tex]2x-5y=-24[/tex]

Step-by-step explanation:

we know that

The equation of a line in point slope form is equal to

[tex]y-y1=m(x-x1)[/tex]

In this problem we have

[tex]m=\frac{2}{5}[/tex]

[tex](-2,4)[/tex]

substitute

[tex]y-4=\frac{2}{5}(x+2)[/tex] ----> equation in point slope form

Convert to slope intercept form

[tex]y=\frac{2}{5}x+\frac{4}{5}+4[/tex]

[tex]y=\frac{2}{5}x+\frac{24}{5}[/tex] ----> equation in slope intercept form

Convert to standard form

[tex]y=\frac{2}{5}x+\frac{24}{5}[/tex]

Multiply by 5 both sides to remove the fraction

[tex]5y=2x+24[/tex]

[tex]2x-5y=-24[/tex] -----> equation i standard form