Respuesta :

For this case we must find the following expression:

[tex](2x-1) (x + 4)[/tex]

Applying distributive property term to term we have:

[tex](2x) (x) + (2x) (4) - (1) (x) - (1) (4) =\\2x ^ 2 + 8x-x-4 =[/tex]

Simplifying similar terms:

[tex]2x ^ 2 + 7x-4[/tex]

Answer:

[tex]2x ^ 2 + 7x-4[/tex]

2 x squared + 7 x minus 4

Option C

Answer:

option 3 - [tex](2x-1)(x+4)=2x^2+7x-4[/tex]

Step-by-step explanation:

Given : Expression (2 x minus 1)(x + 4)  is  [tex](2x-1)(x+4)[/tex]

To find : What is the product ?

Solution :

Expression [tex](2x-1)(x+4)[/tex]

Multiply term by term,

[tex](2x-1)(x+4)=2x\times x+2x\times 4-1\times x-1\times 4[/tex]

[tex](2x-1)(x+4)=2x^2+8x-x-4[/tex]

[tex](2x-1)(x+4)=2x^2+7x-4[/tex]

Therefore, Option 3 is correct.