Respuesta :
For this case we must find the following expression:
[tex](2x-1) (x + 4)[/tex]
Applying distributive property term to term we have:
[tex](2x) (x) + (2x) (4) - (1) (x) - (1) (4) =\\2x ^ 2 + 8x-x-4 =[/tex]
Simplifying similar terms:
[tex]2x ^ 2 + 7x-4[/tex]
Answer:
[tex]2x ^ 2 + 7x-4[/tex]
2 x squared + 7 x minus 4
Option C
Answer:
option 3 - [tex](2x-1)(x+4)=2x^2+7x-4[/tex]
Step-by-step explanation:
Given : Expression (2 x minus 1)(x + 4) is [tex](2x-1)(x+4)[/tex]
To find : What is the product ?
Solution :
Expression [tex](2x-1)(x+4)[/tex]
Multiply term by term,
[tex](2x-1)(x+4)=2x\times x+2x\times 4-1\times x-1\times 4[/tex]
[tex](2x-1)(x+4)=2x^2+8x-x-4[/tex]
[tex](2x-1)(x+4)=2x^2+7x-4[/tex]
Therefore, Option 3 is correct.